

FEATURES

- Efficiency up to 80%
- ► 1500VDC Isolation
- MTBF > 1,000,000 Hours
- 3:1 Wide Input Range
- CSA60950-1 Safety Approval
- Short Circuit Protection
- ► Temperature Performance -25°C to +71°C
- UL 94V-0 Package Material
- Internal SMD Construction
- Industry Standard Pinout

PRODUCT OVERVIEW

Minmax's MIW1300-Series power modules operate over a 3:1 input voltage ranges of 10-30VDC which provide precisely regulatedoutput voltages of 5V, 12V, 15V, ±12V and ±15VDC. The -25°C to +71°C operating temperature range makes it ideal for data communication equipments, mobile battery driven equipments, distributed power systems, telecommunication equipments, mixed analog/digital subsystems, process/machine control equipments, computer peripheral systems and industrial robot systems.

The modules have a maximum power rating of 3W and a typical full-load efficiency of 80%, continuous short circuit, 45mA output ripple.

Model Selection Guide

	Guido									
Model	Input	Output	Ou	Itput	Input Current		Reflected	Max. capacitive	Efficiency	
Number	r Voltage Voltage Current		Ripple	Load	(typ.)					
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load	
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%	
MIW1322		5	600	60	188				80	
MIW1323		12	250	25	188	5 20	5 20	4000	80	
MIW1324	20 (10 ~ 30)	15	200	20	188				80	
MIW1326	(10~30)	±12	±125	±12.5	188				80	
MIW1327		±15	±100	±10	188			470#	80	

For each output

Input Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
Input Surge Voltage (1 sec. max.)	All Models	-0.7		50	
Start-Up Voltage		4.5	7	10	VDC
Under Voltage Shutdown			6.5	8.5	
Short Circuit Input Power			1000	1500	mW
Internal Power Dissipation	All Models			2500	mW
Conducted EMI		Co	mpliance to E	N 55022, clas	s A

Output Specifications

Parameter	Conditions	Min.	Typ.	Max.	Unit	
Output Voltage Accuracy			±0.5	±2.0	%	
Output Voltage Balance	Dual Output, Balanced Loads		±0.5	±2.0	%	
Line Regulation	Vin=Min. to Max.		±0.2	±0.5	%	
Load Regulation	lo=10% to 100%		±0.2	±0.5	%	
Ripple & Noise (20MHz)			45	60	mV _{P-P}	
Ripple & Noise (20MHz)	Over Line, Load & Temp.			80	mV _{P-P}	
Ripple & Noise (20MHz)				28	mV rms	
Transient Recovery Time	25% Lond Chan Channe		300	500	uS	
Transient Response Deviation	25% Load Step Change		±3	±5	%	
Temperature Coefficient			±0.01	±0.02	%/°C	
Over Load Protection	Foldback	120			%	
Short Circuit Protection	(Continuous				

E-mail:sales@minmax.com.tw Tel:886-6-2923150

2022/03/28 REV:4 Page 1 of 4

www.minmax.com.tw

MIW1300 SERIES

DC-DC CONVERTER 3W, DIP-Package

MIW1300 SERIES

DC-DC CONVERTER 3W, DIP-Package

General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage (rated)	60 Seconds	1500			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V			500	pF
Switching Frequency			330		kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	1,000,000			Hours
Safety Approvals UL/cUL 60950-1 recognition(CSA certificate)					

Input Fuse

All Models 600mA Slow-Blow Type

Environmental Specifications

Parameter	Conditions	Min.	Max.	Unit	
Operating Temperature Range (with Derating)	Ambient	-25	+85	°C	
Case Temperature			+100	°C	
Storage Temperature Range		-50	+125	°C	
Humidity (non condensing)			95	% rel. H	
Cooling	Free-Air convection				
Lead Temperature (1.5mm from case for 10Sec.)			260	°C	

Power Derating Curve

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement bandwidth is 0-20MHz.
- 4 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 5 All DC-DC converters should be externally fused at the front end for protection.
- 6 Other input and output voltage may be available, please contact MINMAX.
- 7 Specifications subject to change without notice.

MIW1300 SERIES

DC-DC CONVERTER 3W, DIP-Package

Case Size	:	31.8x20.3x10.2mm (1.25x0.80x0.40 Inches)	
Case Material	:	Plastic resin (flammability to UL 94V-0 rated	
Pin Material	:	Phosphor Bronze	
Weight	:	12.4g	

MIW1300 SERIES

DC-DC CONVERTER 3W, DIP-Package

Test Setup

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7uH) and Cin (220µF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Overcurrent Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 3.3μ F for the devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Maximum Capacitive Load

The MIW1300 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 470µF maximum capacitive load for dual outputs and 4000µF capacitive load for single outputs. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 100°C. The derating curves are determined from measurements obtained in a test setup.

