

DC-DC CONVERTER 1W, SMD-Package

FEATURES

- Industrial SMD Package
- I/O Isolation 1000 VDC
- ► Operating Ambient Temp. Range -40°C to +90°C
- ► Water-washable Process Available
- Qualified for Lead-free Reflow Solder Process According to IPC/JEDEC J-STD-020D.1
- Tape & Reel Package Available

PRODUCT OVERVIEW

The MINMAX MSAU200 series is a range of 1W DC-DC converters in a SMD- Package featuring I/O-isolation of 1000VDC. The small footprint makes this product the ideal solution for many applications where a voltage has to be isolated i.e for noise reduction, ground loop elimination, in digital interfaces or where a converted voltage is required.

An excellent efficiency allows an operating temperature range of 40°C to +90°C. These converters are fully qualified for the higher temperature profile used in lead-free reflow solder processes. For automated SMD production lines the product can also be supplied in tape& reel package.

Model Selection Guide

Model Number	Input Voltage (Range)	Output Voltage	Output Current		Input Current		Load Regulation	Max. capacitive Load	Efficiency (typ.)	
			Max.	Min.	@Max. Load	@No Load			@Max. Load	
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	% (max.)	μF	%	
MSAU201		±5	±100	±2	267	30	10	- 33	75	
MSAU202	5	±9	±55	±1	260		10		76	
MSAU203	(4.5 ~ 5.5)	±12	±42	±0.8	255		8		79	
MSAU204		±15	±33	±0.7	251		7		79	
MSAU211		±5	±100	±2	111		8		75	
MSAU212	12	±9	±55	±1	109	45	8		76	
MSAU213	(10.8 ~ 13.2)	±12	±42	±0.8	105	15	5	33	80	
MSAU214		±15	±33	±0.7	103		5		80	
MSAU221		±5	±100	±2	56	9	8	22	74	
MSAU222	24	±9	±55	±1	55		8		75	
MSAU223	(21.6 ~ 26.4)	±12	±42	±0.8	53		Э	Э	5	33
MSAU224		±15	±33	±0.7	52		5		79	

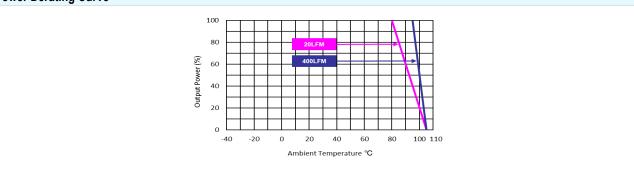
Input Specifications

Parameter	Model	Min.	Тур.	Max.	Unit
	5V Input Models	4.5	5	5.5	
Input Voltage Range	12V Input Models	10.8	12	13.2	
	24V Input Models	21.6	24	26.4	
	5V Input Models	-0.7		9	VDC
Input Surge Voltage (1 sec. max.)	12V Input Models	-0.7		18	
	24V Input Models	-0.7		30	
Input Filter	All Models	Internal Capacitor			

DC-DC CONVERTER 1W, SMD-Package

Output Specifications

- appropriations							
Parameter	Conditions	Min.	Тур.	Max.	Unit		
Output Voltage Setting Accuracy			±1.0	±3.0	%Vnom.		
Output Voltage Balance	Dual Output, Balanced Loads		±0.1	±1.0	%		
Line Regulation	For Vin Change of 1%		±1.2	±1.5	%		
Load Regulation	Io=20% to 100%		See Model Selection Guide				
Ripple & Noise	0-20 MHz Bandwidth			120	mV_{P-P}		
Temperature Coefficient			±0.01	±0.02	%/°C		
Short Circuit Protection	0.5 Second Max. Automatic Recovery						

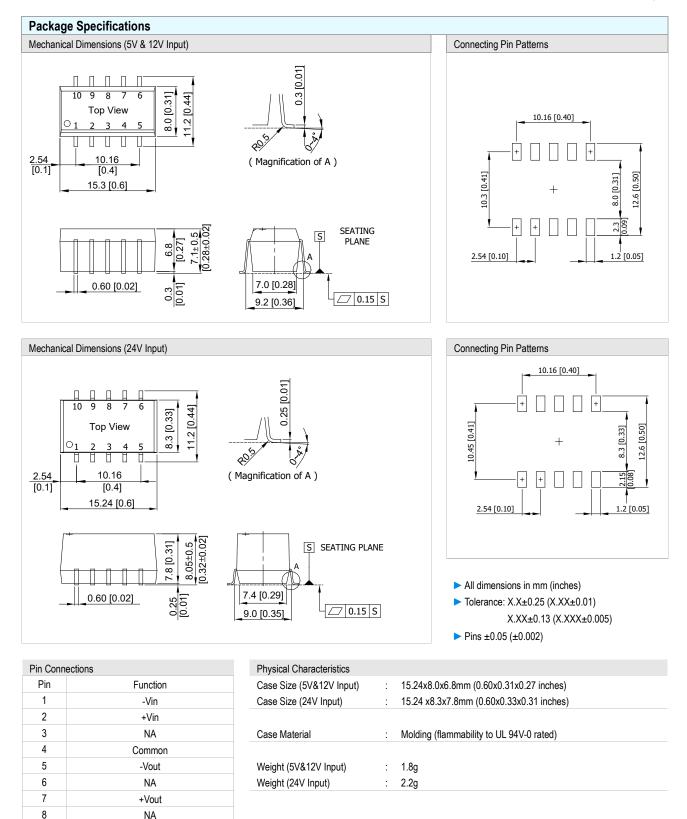

General Specifications

•					
Parameter	Conditions	Min.	Тур.	Max.	Unit
VO laslation Valtana	60 Seconds	1000			VDC
I/O Isolation Voltage	1 Second	1200			VDC
I/O Isolation Resistance	500 VDC	1000			MΩ
I/O Isolation Capacitance	100kHz, 1V		40	100	pF
Switching Frequency		50	100	140	kHz
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	2,000,000 H		Hours	
Moisture Sensitivity Level (MSL)	IPC/JEDEC J-STD-020D.1		Level 3		

Environmental Specifications

Parameter	Conditions	Min.	Max.	Unit	
Operating Ambient Temperature Range		-40	+85	°C	
(See Power Derating Curve)		-40	+00	U	
Case Temperature			+105	°C	
Storage Temperature Range		-50	+125	°C	
Humidity (non condensing)			95	% rel. H	
Lead-free Reflow Solder Process	IPC/JEDEC J-STD-020D.1				

Power Derating Curve


Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact MINMAX.
- 5 Specifications are subject to change without notice.
- 6 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC CONVERTER 1W, SMD-Package

NA: Not Available for Electrical Connection

9

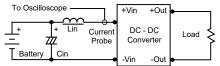
10

Tel:886-6-2923150 E-mail:sales@minmax.com.tw

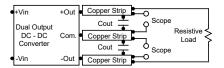
NA

NA

NA


2021/12/28 REV:9 Page 3 of 4

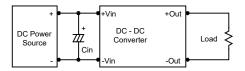
Test Setup


Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7µH) and Cin (220µF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

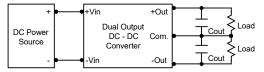
Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.33µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

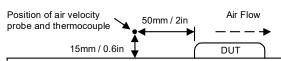

Technical Notes

Maximum Capacitive Load

The MSAU200 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 33µF maximum capacitive load. The maximum capacitance can be found in the data sheet.


Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100kHz) capacitor of 2.2μ F for the 5V input devices, a 1.0μ F for the 12V input devices and a 0.47μ F for the 24V devices.


Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 0.47µF capacitors at the output.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

