

FEATURES

- Industrial Standard 2" X 1" Package
- Wide 2:1 Input Voltage Range
- Fully Regulated Output Voltage
- ► High Efficiency up to 88%
- I/O Isolation 1500 VDC
- ► Operating Ambient Temp. Range -40°C to +85°C
- Overload and Short Circuit Protection
- Remote On/Off Control(option), Output Voltage Trim
- Shielded Metal Case with Insulated Baseplate
- ► UL/cUL/IEC/EN 60950-1 Safety Approval

CSA 60950-1 CSA 60

MKW5000 SERIES DC-DC CONVERTER 30W

PRODUCT OVERVIEW

The MINMAX MKW5000 series is a range of isolated 30W DC-DC converter modules featuring fully regulated output voltages and wide 2:1 input voltage ranges. The product comes in a 2"x 1"x 0.4" metal package with industry standard pinout. An excellent efficiency allows an operating temperature range of -40°C to +85°C. These DC-DC converters offer an economical solution for many cost critical applications in battery-powered equipment and instrumentation.

Model	Input	Output	Ou	tput	Input Current		Reflected	Max. capacitive	Efficiency
Number	Voltage	Voltage	Cui	rent			Ripple	Load	(typ.)
	(Range)		Max.	Min.	@Max. Load	@No Load	Current		@Max. Load
	VDC	VDC	mA	mA	mA(typ.)	mA(typ.)	mA(typ.)	μF	%
MKW5030		2.5	6000	0	744				84
MKW5031		3.3	6000	0	959		100	6800	86
MKW5032	24	5	5000	0	1185	70			88
MKW5039	(18~36)	5.1	5000	0	1207	70	100		88
MKW5033		12	2500	166	1420			000	88
MKW5034		15	2000	133	1420			680	88
MKW5040		2.5	6000	0	372				84
MKW5041		3.3	6000	0	480				86
MKW5042	48	5	5000	0	604	50	50	6800	88
MKW5049	(36 ~ 75)	5.1	5000	0	604	50	50		88
MKW5043	1	12	2500	166	710			000	88
MKW5044	1	15	2000	133	710			680	88

Input Specifications

input opcomoutions						
Parameter	Model	Min.	Тур.	Max.	Unit	
	24V Input Models	-0.7		50		
Input Surge Voltage (1 sec. max.)	48V Input Models	-0.7		100		
Start Lin Thrashold Valtage	24V Input Models	17	17.8	18	VDC	
Start-Up Threshold Voltage	48V Input Models	34	35	36	VDC	
Linder) (altage Chutdown	24V Input Models	16	16.5	17		
Under Voltage Shutdown	48V Input Models	32	33	34		
Short Circuit Input Power				4500	mW	
Input Filter	All Models	Internal LC Type				
Conducted EMI (with suffix A only)		Compliance to EN 55022, class A				

MKW5000 SERIES

DC-DC CONVERTER 30W

Remote On/Off Control

Parameter	Conditions	Min.	Тур.	Max.	Unit				
Converter On	2.5 to 100VDC or Open Circuit								
Converter Off	-1V ~ 1V or Short Circuit								
Control Input Current (on)	Vctrl = 5.0V			5	μA				
Control Input Current (off)	Vctrl = 0V			-100	μA				
Control Common	Referenced to Negative Input								
Standby Input Current	Nominal Vin		2	5	mA				

Output Specifications

Parameter	Conditions		Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy					±1.0	%Vnom.
Line Regulation	Vin=Min. to M	ax. @Full Load		±0.1	±0.3	%
Load Regulation	lo=0% to 100%	2.5, 3.3, 5/5.1Vout Models		±0.5	±1.0	%
	lo=10% to 100%	12,15Vout Models		±0.5	±1.0	%
Ripple & Noise	0-20 MHz		75	100	mV _{P-P}	
Transient Recovery Time	25% Lood		200	500	µsec	
Transient Response Deviation	25% Load Step Change			±2	±4	%
Temperature Coefficient				±0.01	±0.02	%/°C
Trim Up / Down Range	lp / Down Range % of Nominal Output Voltage				±10	%
Over Load Protection	Protection Foldback		110	155		%
Short Circuit Protection	Continuous, Automatic Recovery					

General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit			
1/O loolation Voltage	60 Seconds	1500			VDC			
I/O Isolation Voltage	1 Second	1800			VDC			
I/O Isolation Resistance	500 VDC	1000			MΩ			
I/O Isolation Capacitance	100kHz, 1V		1200	1500	pF			
Switching Frequency		280	350	400	kHz			
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	600,000 Hours			Hours			
Safety Approvals UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)								

Environmental Specifications

Parameter	Min.	Max.	Unit					
Operating Ambient Temperature Range (See Power Derating Curve)	-40	+85	°C					
Case Temperature		+105	°C					
Storage Temperature Range	-50	+125	°C					
Humidity (non condensing)		95	% rel. H					
Lead Temperature (1.5mm from case for 10Sec.)		260	°C					

Power Derating Curve

E-mail:sales@minmax.com.tw Tel:886-6-2923150

MKW5000 SERIES

DC-DC CONVERTER 30W

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%
- 3 These power converters require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage these modules; however they may not meet all specifications listed.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 Specifications are subject to change without notice.

Package Specifications Mechanical Dimensions Pin Connections Pin Function 10.16 5.08 5.08 [0.20] [0.20] 1 +Vin 2 -Vin Ø1.00 [Ø0.04] 3 Remote On/Off 4 +Vout 5 -Vout 6 Trim 45.72 [1.80] 50.8 [2.00] Bottom View 3.6 [0.14] 1.1 [0.04] 6 0 All dimensions in mm (inches) Tolerance: X.X±0.25 (X.XX±0.01) X.XX±0.13 (X.XXX±0.005) 10.16 10.16 2.54 5.1 10.2 [0.40] [0.10] [0.40] [0.20] [0.40] Pin diameter Ø 1.0 ±0.05 (0.04±0.002) 25.4 [1.00]

Physical Characteristics

i nyoloal one							
Case Size		0.8x25.4x10.2mm (2.0x1.0x0.40 inches)					
Case Material	:	Metal With Non-Conductive Baseplate					
Base Material	:	FR4 PCB (flammability to UL 94V-0 rated)					
Pin Material	:	Copper Alloy					
Weight	:	32g					

E-mail:sales@minmax.com.tw Tel:886-6-2923150

Physical Characteris	tics									
Heatsink Material	:	Aluminum								
Finish	:	Black Anodized Coating								
Weight	:	9g								
The advantages of the advan	of add	ling a heatsink are:								
1. To improve heat d	issipa	ation and increase the								
stability and reliab	stability and reliability of the DC-DC converters at									
high operating ten	•									
	•	emperature of the DC-DC								
converter, please	reter	to Derating Curve.								

www.minmax.com.tw

MKW5000 SERIES

DC-DC CONVERTER 30W

Order Code Table											
Standard	With EMI	With heatsink	With Remote	With EMI &	With EMI &	With heatsink &	With EMI, heatsink &				
			On/Off	heatsink	Remote On/Off	Remote On/Off	Remote On/Off				
MKW5030	MKW5030A	MKW5030H	MKW5030-RC	MKW5030AH	MKW5030A-RC	MKW5030H-RC	MKW5030AH-RC				
MKW5031	MKW5031A	MKW5031H	MKW5031-RC	MKW5031AH	MKW5031A-RC	MKW5031H-RC	MKW5031AH-RC				
MKW5032	MKW5032A	MKW5032H	MKW5032-RC	MKW5032AH	MKW5032A-RC	MKW5032H-RC	MKW5032AH-RC				
MKW5039	MKW5039A	MKW5039H	MKW5039-RC	MKW5039AH	MKW5039A-RC	MKW5039H-RC	MKW5039AH-RC				
MKW5033	MKW5033A	MKW5033H	MKW5033-RC	MKW5033AH	MKW5033A-RC	MKW5033H-RC	MKW5033AH-RC				
MKW5034	MKW5034A	MKW5034H	MKW5034-RC	MKW5034AH	MKW5034A-RC	MKW5034H-RC	MKW5034AH-RC				
MKW5040	MKW5040A	MKW5040H	MKW5040-RC	MKW5040AH	MKW5040A-RC	MKW5040H-RC	MKW5040AH-RC				
MKW5041	MKW5041A	MKW5041H	MKW5041-RC	MKW5041AH	MKW5041A-RC	MKW5041H-RC	MKW5041AH-RC				
MKW5042	MKW5042A	MKW5042H	MKW5042-RC	MKW5042AH	MKW5042A-RC	MKW5042H-RC	MKW5042AH-RC				
MKW5049	MKW5049A	MKW5049H	MKW5049-RC	MKW5049AH	MKW5049A-RC	MKW5049H-RC	MKW5049AH-RC				
MKW5043	MKW5043A	MKW5043H	MKW5043-RC	MKW5043AH	MKW5043A-RC	MKW5043H-RC	MKW5043AH-RC				
MKW5044	MKW5044A	MKW5044H	MKW5044-RC	MKW5044AH	MKW5044A-RC	MKW5044H-RC	MKW5044AH-RC				

E-mail:sales@minmax.com.tw Tel:886-6-2923150

www.minmax.com.tw

DC-DC CONVERTER 30W

Test Setup

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7µH) and Cin (220µF, ESR < 1.0Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Use a Cout 1.0µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is -1V to 1.0V. A logic high is 2.5V to 100V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100µA. The maximum allowable leakage current of a switch connected to the on/off terminal (Pin 3) at logic high (2.5V to 100V) is 5µA.

Output Voltage Trim

Output voltage trim allows the user to increase or decrease the output voltage set point of a module.

The output voltage can be adjusted by placing an external resistor (Radj) between the Trim and +Vout or -Vout terminals. By adjusting Radj, the output voltage can be change by ±10% of the nominal output voltage.

A 10K, 1 or 10 Turn trimpot is usually specified for continuous trimming. Trim pin may be safely left floating if it is not used. Connecting the external resistor (Radj-up) between the Trim and -Vout pins increases the output voltage to set the point as defined in the following equation:

Radj - up = $\frac{(33 \times \text{Vout}) - (30 \times \text{Vadj})}{\text{Vadj} - \text{Vout}}$

Connecting the external resistor (Radj-down) between the Trim and +Vout pins decreases the output voltage set point as defined in the following equation:

Radj-down =
$$\frac{(36.667 \times \text{Vadj}) - (33 \times \text{Vout})}{\text{Vout} - \text{Vadj}}$$

Vout: Nominal Output Voltage Vadj: Adjusted Output Voltage Units: VDC/ kΩ

Overload Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

www.minmax.com.tw

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 33μ F for the 12V input devices and a 10μ F for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

Maximum Capacitive Load

The MKW5000 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. For optimum performance we recommend 680µF maximum capacitive load for 12V & 15V outputs and 6800µF capacitive load for the other outputs. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

