

NFW

DC-DC CONVERTER 150W, Reinforced Insulation, Railway Certified

FEATURES

- Industrial Standard Quarter Brick Package
- Ultra-wide Input Range 36-160VDC
- I/O Isolation 2000VAC with Reinforced Insulation
- Excellent Efficiency up to 90%
- Operating Baseplate Temp. Range -40°C to +105°C
- No Min. Load Requirement
- ► Under-voltage, Overload/Voltage/Temp. and Short Circuit Protection
- ► Remote On/Off Control, Output Voltage Trim, Output Sense
- Vibration and Shock/Bump Test EN 61373 Approved
- Cooling, Dry & Damp Heat Test IEC/EN 60068-2-1, 2, 30 Approved
- Railway EMC Standard EN 50121-3-2 Approved
- Railway Certified EN 50155 (IEC60571) Approved
- Fire Protection Test EN 45545-2 Approved
- UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MRZI150 series is a new generation of high performance 150W DC-DC converters in quarter brick package designed specifically for railway applications with popular 36-160 VDC input ranges. MRZI150 is approved by railway industry standard EN 50155 and complies with EMC standard EN 50121-3-2.

Advanced circuit topology provides a very high efficiency up to 90% which allows baseplate temperature up to 105°C and very high I/O isolation up to 2000VAC with reinforced insulation which are designed to meet stringent requirements and harsh environment.

Further product features include under-voltage, overload/voltage/temp., short circuit protection, remote On/Off Control(positive/negative logic), output voltage trim, output sense and complies specifically fire protection test meets EN45545-2 to ensure safety during railway/railroad vehicle operation.

Model Selection	Guide								
Model	Input	Output	Output	Output	Ing	put	Over	Max. capacitive	Efficiency
Number	Voltage	Voltage	Power	Current	Cur	rent	Voltage	Load	(typ.)
	(Range) (9)			Max.	@Max. Load	@No Load	Protection		@Max. Load
	VDC	VDC	W	A	mA(typ.)	mA(typ.)	VDC	μF	%
MRZI150-110S05		5	135	27	1364	10	6.2	51000	90
MRZI150-110S12	110	12	150	12.5	1515	10	15	8850	90
MRZI150-110S15	(36 ~ 160)	15	150	10	1532	10	18	5700	89
MRZI150-110S24	(30~100)	24	150	6.25	1550	10	30	2200	88
MRZI150-110S54		54	150.12	2.78	1542	10	66	550	88.5

Input Specifications

Parameter	Min.	Тур.	Max.	Unit
Input Voltage Range (9)	36	110	160	
Input Surge Voltage (100ms. max)	-0.7		170	
Start-up Threshold Voltage			36	VDC
Under Voltage Shutdown		35		
Input Filter	Internal Capacitor			

DC-DC CONVERTER 150W, Reinforced Insulation, Railway Certified

Output Specifications							
Parameter		Conditions				Max.	Unit
Output Voltage Setting Accuracy						±1.0	%
Line Regulation		Vin=Min. to Max.	@ Full Load			±0.2	%
Load Regulation		Min. Load to F	ull Load			±0.3	%
Min. Load			No minimum Load	Requiremer	nt		
		5V Output	Measured with a		100		mV _{P-P}
		12V, 15V Output	22µF/25V POLYMER		150		mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	24V Output	Measured with a 33µF/35V POLYMER		200		mV _{P-P}
		54V Output	Measured with a 1µF/100V MLCC		300		mV _{P-P}
Start-up Time (Power On)					50		mS
Transient Recovery Time		25% Load Step Change (4)			250		µsec
Transient Response Deviation					±3	±5	%
Temperature Coefficient					±0.02	%/°C	
	0/ of Norm		Other Models			±10	%
Trim Up / Down Range (8)	% of Nomi	nal Output Voltage	54V Output			+5 / -15	%
Over Load Protection (7)		Cu	yp. of lout m	ax., Hiccup			
Short Circuit Protection			Automatic R	ecovery			

General Specifications Parameter Conditions Min. Max. Unit Тур. 2000 VAC I/O Isolation Voltage Reinforced Insulation, Rated For 60 Seconds --------Input to case 1500 VAC -------Isolation Voltage Rated For 60 Seconds Output to case 500 VAC ---500 VDC I/O Isolation Resistance 10 GΩ -------I/O Isolation Capacitance 100kHz, 1V ----2000 ---pF Other Models ----200 kHz ----Switching Frequency 54V Output kHz 180 ----MTBF(calculated) MIL-HDBK-217F@25°C Full Load, Ground Benign 412,541 Hours EN 50155, IEC 60571 Safety Standards UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1

Remote On/Off Control	
-----------------------	--

Kennote On										
	Parameter		Conditions	Min.	Тур.	Max.	Unit			
Desitive legie (C	tondord)	Converter On	3.5V ~ 12V or C	Dpen Circuit						
Positive logic (S	landard)	Converter Off	0V ~ 1.2V or Short Circuit							
Negative logic (Option) Converter On Converter Off		Converter On	0V ~ 1.2V or S	hort Circuit						
		Converter Off	3.5V ~ 12V or Open Circuit							
	Constant January Courseast	Converter On Vctrl = 5.0V				0.5	mA			
Positive logic	Control Input Current	Converter Off	Vctrl = 0V			-0.5	mA			
Negativa legia	Control Innut Current	Converter On	Vctrl = 0V			-0.5	mA			
Negative logic	Control Input Current	Converter Off	Vctrl = 5.0V			0.5	mA			
Control Common			Referenced to Negative Input							
Standby Input Current			Nominal Vin		3		mA			

MRZI150 SERIES

DC-DC CONVERTER 150W, Reinforced Insulation, Railway Certified

	•		
FW(.	Sno	citica	tions
	ODE	CIIICa	luona

Parameter		Standards & Level Perform					
General		Compliance with EN 50121-3-2 Railway Applications					
514	Conduction	EN 55020/44	MCH	01			
EMI (5)	Radiation	EN 55032/11	With external components	Class A			
	EN 55024, EN 55035						
	F0D	Direct discharge	Indirect discharge HCP & VCP	٨			
	ESD	EN 61000-4-2 air ± 8kV, Contact ± 6kV	Contact ± 6kV	A			
ENC	Radiated immunity	EN 61000-4-3	A				
EMS (5)	Fast transient	EN 61000-4-4	A				
	Surge	EN 61000-4-5 ±1kV					
	Conducted immunity	EN 61000-4-6	A				
	PFMF	EN 61000-4-8	A				

Environmental Specifications					
Parameter	Model	Min.	Тур.	Max.	Unit
	MRZI150-110S05			+100	
Baseplate Temperature Range	MRZI150-110S12, MRZI150-110S24 MRZI150-110S54, MRZI150-110S15	-40		+105	°C
Over Temperature Protection (Baseplate)			+110		°C
Storage Temperature Range		-50		+125	°C
Cooling Test	Compliance to	IEC/EN60068-	-2-1		
Dry Heat	Compliance to	IEC/EN60068-	-2-2		
Damp Heat	Compliance to	IEC/EN60068-2	2-30		
Vibration and Shock/Bump	Compliance	to IEC/EN 6137	73		
Operating Humidity (non condensing)		5		95	% rel. H
Lead Temperature (1.5mm from case for 10Sec.)				260	°C

Power Derating Curve

E-mail:sales@minmax.com.tw Tel:886-6-2923150

www.minmaxpower.com

Notes

MRZI150 SERIES

DC-DC CONVERTER 150W, Reinforced Insulation, Railway Certified

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Other input and output voltage may be available, please contact MINMAX.
- 4 It is necessary to parallel a capacitor across the input pins under normal operation. Minimum Capacitance: 150μF/ 250V KXJ.
- 5 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 6 The hot-swap operation is extremely prohibited.
- 7 Over Current Protection (OCP) is built in and works over 130% of the rated current or higher. However, use in an over current situation over 4 seconds must be avoided whenever possible.
- 8 Do not exceed maximum power specification when adjusting output voltage. Please see the External Output Trimming table at page 6.
- 9 *Input Voltage Vin= 36VDC/1s for Start-up Operation and Vin= 40VDC for Continuos Operation.
- 10 Specifications are subject to change without notice.

E-mail:sales@minmax.com.tw Tel:886-6-2923150

Diameter

mm (inches)

Ø 1.0 [0.04]

Ø 1.0 [0.04]

Ø 1.0 [0.04]

Ø 2.0 [0.08]

Ø 1.0 [0.04]

Ø 1.0 [0.04]

Ø 1.0 [0.04]

Ø 2.0 [0.08]

DC-DC CONVERTER 150W, Reinforced Insulation, Railway Certified

Function

+Vin

Remote On/Off

-Vin

-Vout

* -Sense

Trim

* +Sense

+Vout

All dimensions in mm (inches)

Tolerance: X.X±0.5 (X.XX±0.02)

Maximum output deviation is 10% inclusive of trim

X.XX±0.25 (X.XXX±0.01) Pin diameter tolerance: X.X±0.05 (X.XX±0.002)

* If remote sense not used the +sense should be connected to +output and -sense should be connected to -output

Pin Connections

Pin

1

2

3

4

5

6

7

8

Package Specifications

Physical Characteristics

Case Size	:	58.4x37.3x17.0 mm (2.30x1.47x0.67 inches)			
Case Material	:	c resin (flammability to UL 94V-0 rated)			
Top Side Base Material	:	Aluminum Plate			
Pin Material	:	Copper			
Potting Material	:	Silicone (UL94-V0)			
Weight	:	110g			

Physical Characteristics		
Heatsink Material	:	Aluminum
Finish	:	Black Anodized Coating
Weight	:	63g

*For more power derating information, please refer to E.C Note.

E-mail:sales@minmax.com.tw Tel:886-6-2923150

www.minmaxpower.com

DC-DC CONVERTER 150W, Reinforced Insulation, Railway Certified

PCB Installation of End Users

1. Please evaluates mechanical stress (vibration, shock, bump) during field applications.

2. It has to equip with installation kit if escess the guaranteed specifications, please contacts MINMAX for detail information.

3. Applied torque per screw 9 kgf.cm min.

External Output Trimming

Output can be externally trimmed by using the method shown below

	MRZI150)-110S05	MRZI150	-110S12	MRZI150	-110S15	MRZI150	-110S24	MRZI150	-110S54
Trim Range	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up
(%)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)
1	138.88	106.87	413.55	351.00	530.73	422.77	598.66	487.14	1,882.57	560.73
2	62.41	47.76	184.55	157.50	238.61	189.89	267.78	218.02	877.94	230.36
3	36.92	28.06	108.22	93.00	141.24	112.26	157.49	128.31	543.06	120.24
4	24.18	18.21	70.05	60.75	92.56	73.44	102.34	83.46	375.62	65.18
5	16.53	12.30	47.15	41.40	63.35	50.15	69.25	56.55	275.15	32.15
6	11.44	8.36	31.88	28.50	43.87	34.63	47.19	38.61	208.18	
7	7.79	5.55	20.98	19.29	29.96	23.54	31.44	25.79	160.34	
8	5.06	3.44	12.80	12.37	19.53	15.22	19.62	16.18	124.46	
9	2.94	1.79	6.44	7.00	11.41	8.75	10.43	8.70	96.55	
10	1.24	0.48	1.35	2.70	4.92	3.58	3.08	2.72	74.23	
11									55.96	
12									40.74	
13									27.86	
14									16.82	
15									7.25	

www.minmaxpower.com

DC-DC CONVERTER 150W, Reinforced Insulation, Railway Certified

Order Code Table				
Standard (Positive logic)	With heatsink (Positive logic)			
MRZI150-110S05	MRZI150-110S05-HS7			
MRZI150-110S12	MRZI150-110S12-HS7			
MRZI150-110S15	MRZI150-110S15-HS7			
MRZI150-110S24	MRZI150-110S24-HS7			
MRZI150-110S54	MRZI150-110S54-HS7			
Negative logic	With heatsink (Negative logic)			
MRZI150-110S05N	MRZI150-110S05N-HS7			
MRZI150-110S12N	MRZI150-110S12N-HS7			
MRZI150-110S15N	MRZI150-110S15N-HS7			
MRZI150-110S24N	MRZI150-110S24N-HS7			
MRZI150-110S54N	MRZI150-110S54N-HS7			

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC CONVERTER 150W, Reinforced Insulation, Railway Certified

Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a 22µF polymer capacitor for 5V, 12V, 15V output models and a 33µF polymer capacitor for 24V output model and a 1µF ceramic capacitor for 54V output model. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 2) during a logic low is -500µA.

Negative logic remote on/off turns the module on during a logic low voltage on the remote on/off pin, and off during a logic high. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum source current at the on/off terminal (Pin 2) during a logic high is 500µA.

Overload Protection

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

Maximum Capacitive Load

The MRZI150 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the baseplate temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

