

DC-DC Power Module 10W

FEATURES

- Fully Encapsulated Plastic Case for Chassis and DIN-Rail Mounting Version
- 80-160VDC Wide Input Voltage Range
- Fully Regulated Output Voltage
- ► High Efficiency up to 85%
- I/O Isolation 3000VAC with Reinforced Insulation
- Operating Ambient Temp. Range -40°C to +87°C
- No Min. Load Requirement
- Very Low No Load Power Consumption
- Under-voltage, Overload and Short Circuit Protection
- Remote On/Off Control
- ► EMI Emission EN 55032 Class A & FCC Level A Approved
- EMC Immunity EN61000-4-2,3,4,5,6,8 Approved
- UL/cUL/IEC/EN 62368-1 Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MKA10C series is the latest generation of 10Watt isolated DC-DC power module with wide input range of 80-160VDC with 9 models for 5/5.1/12/15/24/48/±12/±15/±24VDC tightly output voltage in a chassis and DIN-Rail mounting type with terminal strip connections which specifically design for electricity and renewable energy field applications. Key performance featuring high I/O isolation 3000VAC with reinforced insulation, high efficiency for wide operating ambient temp. range -40°C to +87°C, no min. load requirement, very low no-load power consumption, remote on/off, build-in EMC filter for EMI emission EN 55032 Class A and EMC immunity EN 61000-4-2,3,4,5,6,8 approved, build-in fault condition protection include under-voltage, overload and short circuit protection.

The MKA10C series has been intensely qualified to safety approval UL/cUL/IEC/EN 62368-1 with CB report and CE marking which offer a solution for the applications where high voltage input range, high efficiency for wide operating ambient temp. range, isolated power with high I/O isolation & insulation level, fully encapsulated package and eliminate the power board are required.

	Input Voltage	Output Voltage	Output Current	Input Current		Max. capacitive Load	Efficiency (typ.)
Model Number	(Range)	-	Max.	@Max. Load	@No Load		@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	μF	%
MKA10-110S05C		5	2000	110		1000	83
MKA10-110S051C		5.1	2000	112		1000	83
MKA10-110S12C		12	833	107		470	85
MKA10-110S15C		15	666	107		330	85
MKA10-110S24C	110	24	416	107	20	150	85
MKA10-110S48C	(80 ~ 160)	48	208	109		68	83
MKA10-110D12C		±12	±416	107		220#	85
MKA10-110D15C		±15	±333	107		150#	85
MKA10-110D24C		±24	±208	108		68#	84

For each output

Input Specifications					
Parameter	Conditions / Model	Min.	Тур.	Max.	Unit
Input Surge Voltage (1 sec. max.)		-0.7		170	
Start-Up Threshold Voltage				80	VDC
Under Voltage Shutdown			78		
Start Up Time (Power On)	Nominal Vin and Constant Resistive Load		30		ms
Input Filter	All Models	All Models Internal Pi Type			

DC-DC Power Module 10W

Remote On/Off Control

Parameter	Conditions	Min.	Тур.	Max.	Unit		
Converter On	3.5V ~ 12V or Open Circuit						
Converter Off	0~1.2V or Short Circuit (Pin 1 and Pin 2)						
Control Input Current (on)	Vctrl = 5V			500	μA		
Control Input Current (off)	Vctrl = 0V			-500	μA		
Control Common	Referenced to Negative Input						
Standby Input Current	Nominal Vin		2.5		mA		

Output Specifications

Parameter	Conditions / Model		Min.	Тур.	Max.	Unit
Output Voltage Setting Accuracy					±2.0	%Vnom.
Output Voltage Balance	Dual O	utput, Balanced Loads		±1.0	±2.0	%
Line Regulation	Vin=Mi	n. to Max. @Full Load			±0.5	%
Load Regulation		o=0% to 100%			±0.5	%
Load Cross Regulation (Dual Output Models)	Asymmetrical Load 25/100% Full Load				±5.0	%
Minimum Load	No minimum Load Requirement					
Dinnla 9 Naina	0-20 MHz Bandwidth	24V & ±24V & 48V Output Models		180		mV _{P-P}
Ripple & Noise		Other Output Models		90		mV _{P-P}
Transient Recovery Time	0.50/	Land Chan Change			500	µsec
Transient Response Deviation	25%	Load Step Change		±3	±5	%
Temperature Coefficient				±0.01	±0.02	%/°C
Over Load Protection		Hiccup		150		%
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode 0.7Hz typ.)					

General Specifications						
Parameter	Conditions	Min.	Тур.	Max.	Unit	
I/O Isolation Voltage	60 Seconds Reinforced insulation, rated for 1000Vrms working voltage	3000			VACrms	
I/O Isolation Resistance	500 VDC	1000			MΩ	
I/O Isolation Capacitance	100kHz, 1V		2200		pF	
Switching Frequency			275		kHz	
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	3,746,600			Hours	
Safety Approvals	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1 & 60950-1(CB report)					

EMC Specifications

Parameter		Standards & Level	Performance		
EMI	Conduction	EN 55022 ECC part 15	Without outernal components	Class A	
EMI	Radiation	EN 55032, FCC part 15	Without external components	Class A	
	EN 55035				
	ESD.	Direct discharge	Indirect discharge HCP & VCP	А	
	ESD	EN 61000-4-2 Air ± 8kV	Contact ± 6kV		
EMS	Radiated immunity	EN 61000-4-3 10V/m		А	
	Fast transient	EN 61000-4-4 ±2kV		А	
	Surge	EN 610	А		
	Conducted immunity	EN 6100	00-4-6 10Vrms	А	
	PFMF	EN 61000-4-8 100A/m		А	

DC-DC Power Module 10W

Environmental Specifications Min. Parameter Max. Unit Operating Ambient Temperature Range (See Power Derating Curve) -40 +87 °C °C Case Temperature +105 ----50 +125 °C Storage Temperature Range % rel. H Humidity (non condensing) ----95 Altitude 5000 m ---Lead Temperature (1.5mm from case for 10Sec.) °C 260 ---

Power Derating Curve

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage and rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 4 Other input and output voltage may be available, please contact factory.
- 5 Specifications are subject to change without notice.

DC-DC Power Module 10W

Physical Characteristics

Case Size		79.0x34.0x22.0mm (3.11x1.10x0.87 inches)
Case Material	:	Plastic resin (flammability to UL 94V-0 rated)
Weight	:	69g

DC-DC Power Module 10W

Physical Characteristics

Case Size	: 79.0x34.0x22.0mm (3.11x1.10x0.87 inches)
Case Material	: Plastic resin (flammability to UL 94V-0 rated)
Weight	: 112g

Order Code Table

Standard	With DIN Rail Mounting by two Order Code		
MKA10-110S05C	MKA10-110S05C	AC-DIN-05	
MKA10-110S051C	MKA10-110S051C	AC-DIN-05	
MKA10-110S12C	MKA10-110S12C	AC-DIN-05	
MKA10-110S15C	MKA10-110S15C	AC-DIN-05	
MKA10-110S24C	MKA10-110S24C	AC-DIN-05	
MKA10-110S48C	MKA10-110S48C	AC-DIN-05	
MKA10-110D12C	MKA10-110D12C	AC-DIN-05	
MKA10-110D15C	MKA10-110D15C	AC-DIN-05	
MKA10-110D24C	MKA10-110D24C	AC-DIN-05	

DC-DC Power Module 10W

Test Setup

Peak-to-Peak Output Noise Measurement Test

Use a Cout 0.47µF ceramic capacitor. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 1) during a logic low is -500µA.

Overload Protection

To provide protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure current limiting for an unlimited duration. At the point of current-limit inception, the unit shifts from voltage control to current control. The unit operates normally once the output current is brought back into its specified range.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. By using a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 1µF for the 110V input devices, capacitor mounted close to the power module helps ensure stability of the unit.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 3.3µF capacitors at the output.

Maximum Capacitive Load

The MKA10C series has limitation of maximum connected capacitance on the output. The power module may operate in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

