

DC-DC CONVERTER 50W, Highest Power Density

FEATURES

- Smallest Encapsulated 50W Converter
- Compact Size of 2" X 1" Package
- Ultra-wide 4:1 Input Voltage Range
- Fully Regulated Output Voltage
- Excellent Efficiency up to 92%
- I/O Isolation 1500 VDC
- Operating Ambient Temp. Range -40°C to +80°C
- No Min. Load Requirement
- Overload/Voltage/Temp. and Short Circuit Protection
- Remote On/Off Control, Output Voltage Trim
- Shielded Metal Case with Insulated Baseplate
- UL/cUL/IEC/EN 62368-1(60950-1) Safety Approval & CE Marking

PRODUCT OVERVIEW

The MINMAX MKWI50 series is the generation of high-performance DC-DC converter modules setting a new standard concerning power density. The product offers fully 50W in an encapsulated, shielded metal package with dimensions of just 2.0"x1.0"x0.4". All models provide wide 4:1 input voltage range and precisely regulated output voltages.

A very high efficiency up to 92% which allows an operating temperature range of -40°C to +80°C is achieved by advanced circuit topology. Further features include remote On/Off, trimmable output voltage, under-voltage shutdown as well as overload and over-temperature protection.

Typical applications for these converters are battery operated equipment, instrumentation, distributed power architectures in communication and industrial electronics and many other space critical applications.

Model Selection	Guide								
Model	Input	Output	Output	Input		Reflected	Over	Max.	Efficiency
Number	Voltage	Voltage	Current	Cur	rent	Ripple	Voltage	capacitive	(typ.)
	(Range)		Max.	@Max. Load	@No Load	Current	Protection	Load	@Max. Load
	VDC	VDC	mA	mA(typ.)	mA(typ.)	mA(typ.)	VDC	μF	%
MKWI50-24S033		3.3	10000	1528	80		3.9	26000	90
MKWI50-24S05	04	5	10000	2290	60		6.2	17000	91
MKWI50-24S12	24	12	4170	2267	80	40	15	3000	92
MKWI50-24S15	(9~36)	15	3330	2263	80		18	2000	92
MKWI50-24S24		24	2080	2286	80		30	750	91
MKWI50-48S033		3.3	10000	764	40		3.9	26000	90
MKWI50-48S05	40	5	10000	1145	30		6.2	17000	91
MKWI50-48S12	48	12	4170	1134	60	30	15	3000	92
MKWI50-48S15	(18~75)	15	3330	1134	60		18	2000	92
MKWI50-48S24		24	2080	1143	50		30	750	91

Input Specifications

input Specificatio	5115						
Pa	rameter	Conditions / Model	Min.	Тур.	Max.	Unit	
In such Courses Maltanas (4	00	24V Input Models	-0.7		50		
Input Surge Voltage (100ms. max)		48V Input Models	-0.7		100		
Start-Up Threshold Voltage		24V Input Models			9	VDC	
		48V Input Models			18		
Under Voltage Lockout		24V Input Models		7.5			
		48V Input Models 16					
Input Polarity Protectio	n	None					
Otant Lin Time	Power Up	Newing Win and Constant Desisting Lond			30	ms	
Start Up Time	Remote On/Off	Nominal Vin and Constant Resistive Load			30	ms	
Input Filter		All Models		Internal LC Type			

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC CONVERTER 50W, Highest Power Density

Remote On/Off Control Unit Parameter Conditions Min. Тур. Max. Converter On 3.5V ~ 12V or Open Circuit Converter Off 0V ~ 1.2V or Short Circuit Control Input Current (on) Vctrl = 5.0V 0.5 mΑ --------Vctrl = 0V Control Input Current (off) -----0.5 ---mΑ Control Common Referenced to Negative Input 2.5 Standby Input Current Nominal Vin mΑ --------

Output Specifications

•						
Parameter	Conditio	Min.	Тур.	Max.	Unit	
Output Voltage Setting Accuracy					±1.0	%Vnom.
Line Regulation	Vin=Min. to N	lax. @Full Load			±0.5	%
Load Regulation	Min. Load	to Full Load			±0.5	%
Minimum Load		No minimum Loa	d Requiremer	nt		
D'ante O Maine		3.3V & 5V Models(3)			100	mV _{P-P}
Ripple & Noise	0-20 MHz Bandwidth	12V, 15V & 24V Models(3)			150	mV _{P-P}
Transient Recovery Time	ansient Recovery Time			250		µsec
Transient Response Deviation	25% Load S	25% Load Step Change ₍₂₎			±5	%
Temperature Coefficient						%/°C
	% of nominal output			+20 / -10	%	
Trim Up / Down Range (See Page 6)	% of nominal output			±10	%	
Over Load Protection	Hi		150		%	
Short Circuit Protection	Continuous, Automatic Recovery (Hiccup Mode 0.3Hz typ.)					

General Specifications

Parameter	Conditions	Min.	Тур.	Max.	Unit			
1/O la slation Valta na	60 Seconds	1500			VDC			
I/O Isolation Voltage	1 Seconds	1800			VDC			
I/O Isolation Resistance	500 VDC	1000			MΩ			
I/O Isolation Capacitance	100kHz, 1V			2200	pF			
Switching Frequency			285		kHz			
MTBF(calculated)	MIL-HDBK-217F@25°C, Ground Benign	und Benign 230,900 H						
	UL/cUL 60950-1 recognition(CSA c	UL/cUL 60950-1 recognition(CSA certificate), IEC/EN 60950-1(CB-report)						
Safety Approvals	UL/cUL 62368-1 recognition(UL ce	UL/cUL 62368-1 recognition(UL certificate), IEC/EN 62368-1(CB-report)						

EMC Specifications

Parameter		Standards & Level							
EMI ₍₆₎	Conduction		With external components	Class A					
	Radiation	Radiation EN 55032		Class A					
	EN 55024								
	ESD	ESD EN 61000-4-2 air ± 8kV , Contact ± 6kV		A					
EMO	Radiated immunity	EN 6	A						
EMS ₍₆₎	Fast transient	EN 6	A						
	Surge	EN 6	A						
	Conducted immunity	EN 61	A						

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC CONVERTER 50W, Highest Power Density

Environmental Specifications

Dementer	Conditions / Model		Ma	Unit	
Parameter			without Heatsink	with Heatsink	Unit
	MKWI50-24S033, MKWI50-48S033		61	69	
Operating Ambient Temperature Range	MKWI50-24S12, MKWI50-24S15		53	62	
Nominal Vin, Load 100% Inom.	MKWI50-48S12, MKWI50-48S15	-40	53	02	°C
(for Power Derating see relative Derating Curves)	MKWI50-24S05, MKWI50-24S24		40	57	
	MKWI50-48S05, MKWI50-48S24		46	57	
	20LFM Convection without Heatsink	12.1		-	°C/W
	20LFM Convection with Heatsink	9.8			°C/W
	100LFM Convection without Heatsink	9.2			°C/W
The second data as	100LFM Convection with Heatsink 5.4		-	°C/W	
Thermal Impedance	200LFM Convection without Heatsink	rection without Heatsink 7.8		-	°C/W
	200LFM Convection with Heatsink	4.5			°C/W
	400LFM Convection without Heatsink	5.2			°C/W
	400LFM Convection with Heatsink	3.0			°C/W
Case Temperature			+105		°C
Thermal Protection	Shutdown Temperature		110°C	typ.	
Storage Temperature Range			+125		°C
Humidity (non condensing)					% rel. H
RFI	Six-Sided Shie	elded, Metal	Case		
Lead Temperature (1.5mm from case for 10Sec.)			26	0	°C

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC CONVERTER 50W, Highest Power Density

Power Derating Curve

Notes

- 1 Specifications typical at Ta=+25°C, resistive load, nominal input voltage, rated output current unless otherwise noted.
- 2 Transient recovery time is measured to within 1% error band for a step change in output load of 75% to 100%.
- 3 Ripple & Noise measurement with a 1µF/50V MLCC and a 10µF/50V Tantalum Capacitor.
- 4 We recommend to protect the converter by a slow blow fuse in the input supply line.
- 5 Other input and output voltage may be available, please contact MINMAX.
- 6 The external components might be required to meet EMI/EMS standard for some of test items. Please contact MINMAX for the solution in detail.
- 7 Do not exceed maximum power specification when adjusting output voltage.
- 8 Specifications are subject to change without notice.
- 9 The repeated high voltage isolation testing of the converter can degrade isolation capability, to a lesser or greater degree depending on materials, construction, environment and reflow solder process. Any material is susceptible to eventual chemical degradation when subject to very high applied voltages thus implying that the number of tests should be strictly limited. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage. Furthermore, the high voltage isolation capability after reflow solder process should be evaluated as it is applied on system.

DC-DC CONVERTER 50W, Highest Power Density

Physical Characteristics

Case Size	:	50.8x25.4x11.0mm (2.0x1.0x0.43 inches)
Case Material	:	Metal With Non-Conductive Baseplate
Base Material	:	FR4 PCB (flammability to UL 94V-0 rated)
Pin Material	:	Copper Alloy
Potting Material	:	Epoxy (UL94-V0)
Weight	:	34g

Physical Characteris	tics					
Heatsink Material	:	Aluminum				
Finish	:	Black Anodized Coating				
Weight	:	9g				
The advantages of the second secon		5				
 To improve heat dissipation and increase the stability and reliability of the DC-DC converters at high operating temperatures. 						
high operating temperatures.						
2. To increase operat	ting te	mperature of the DC-DC				

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC CONVERTER 50W, Highest Power Density

External Output Trimming

Output can be externally trimmed by using the method shown below

	MKWI50-XXS033		MKWI50-XXS05		MKWI50	MKWI50-XXS12		MKWI50-XXS15		MKWI50-XXS24	
Trim Range	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	Trim down	Trim up	
(%)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	(kΩ)	
1	72.61	60.84	138.88	106.87	413.55	351.00	530.73	422.77	333.39		
2	32.55	27.40	62.41	47.76	184.55	157.50	238.61	189.89	148.80	243.70	
3	19.20	16.25	36.92	28.06	108.22	93.00	141.24	112.26	87.26		
4	12.52	10.68	24.18	18.21	70.05	60.75	92.56	73.44	56.50	108.50	
5	8.51	7.34	16.53	12.30	47.15	41.40	63.35	50.15	38.04		
6	5.84	5.11	11.44	8.36	31.88	28.50	43.87	34.63	25.73	63.43	
7	3.94	3.51	7.79	5.55	20.98	19.29	29.96	23.54	16.94		
8	2.51	2.32	5.06	3.44	12.80	12.37	19.53	15.22	10.35	40.90	
9	1.39	1.39	2.94	1.79	6.44	7.00	11.41	8.75	5.22		
10	0.50	0.65	1.24	0.48	1.35	2.70	4.92	3.58	1.12	27.38	
12										18.37	
14										11.93	
16										7.10	
18										3.34	
20										0.34	

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC CONVERTER 50W, Highest Power Density

Order Code Table						
Standard	With heatsink					
MKWI50-24S033	MKWI50-24S033-HS					
MKWI50-24S05	MKWI50-24S05-HS					
MKWI50-24S12	MKWI50-24S12-HS					
MKWI50-24S15	MKWI50-24S15-HS					
MKWI50-24S24	MKWI50-24S24-HS					
MKWI50-48S033	MKWI50-48S033-HS					
MKWI50-48S05	MKWI50-48S05-HS					
MKWI50-48S12	MKWI50-48S12-HS					
MKWI50-48S15	MKWI50-48S15-HS					
MKWI50-48S24	MKWI50-48S24-HS					

E-mail:sales@minmax.com.tw Tel:886-6-2923150

DC-DC CONVERTER 50W, Highest Power Density

Test Setup

Input Reflected-Ripple Current Test Setup

Input reflected-ripple current is measured with a inductor Lin (4.7 μ H) and Cin (220 μ F, ESR < 1.0 Ω at 100 kHz) to simulate source impedance. Capacitor Cin, offsets possible battery impedance. Current ripple is measured at the input terminals of the module, measurement bandwidth is 0-500 kHz.

Peak-to-Peak Output Noise Measurement Test

Refer to the output specifications or add 4.7µF capacitor if the output specifications undefine Cout. Scope measurement should be made by using a BNC socket, measurement bandwidth is 0-20 MHz. Position the load between 50 mm and 75 mm from the DC-DC Converter.

Technical Notes

Remote On/Off

Positive logic remote on/off turns the module on during a logic high voltage on the remote on/off pin, and off during a logic low. To turn the power module on and off, the user must supply a switch to control the voltage between the on/off terminal and the -Vin terminal. The switch can be an open collector or equivalent. A logic low is 0V to 1.2V. A logic high is 3.5V to 12V. The maximum sink current at the on/off terminal (Pin 3) during a logic low is -100µA.

Overload Protection

To provide hiccup mode protection in a fault (output overload) condition, the unit is equipped with internal current limiting circuitry and can endure overload for an unlimited duration.

Overvoltage Protection

The output overvoltage clamp consists of control circuitry, which is independent of the primary regulation loop, that monitors the voltage on the output terminals. The control loop of the clamp has a higher voltage set point than the primary loop. This provides a redundant voltage control that reduces the risk of output overvoltage. The OVP level can be found in the output data.

Input Source Impedance

The power module should be connected to a low ac-impedance input source. Highly inductive source impedances can affect the stability of the power module. In applications where power is supplied over long lines and output loading is high, it may be necessary to use a capacitor at the input to ensure startup. Capacitor mounted close to the power module helps ensure stability of the unit, it is recommended to use a good quality low Equivalent Series Resistance (ESR < 1.0Ω at 100 kHz) capacitor of a 10μ F for the 24V and 48V devices.

Output Ripple Reduction

A good quality low ESR capacitor placed as close as practicable across the load will give the best ripple and noise performance. To reduce output ripple, it is recommended to use 4.7µF capacitors at the output.

Maximum Capacitive Load

The MKWI50 series has limitation of maximum connected capacitance at the output. The power module may be operated in current limiting mode during start-up, affecting the ramp-up and the startup time. The maximum capacitance can be found in the data sheet.

Thermal Considerations

Many conditions affect the thermal performance of the power module, such as orientation, airflow over the module and board spacing. To avoid exceeding the maximum temperature rating of the components inside the power module, the case temperature must be kept below 105°C. The derating curves are determined from measurements obtained in a test setup.

Minmax Technology Co., Ltd. 2024/06/13 REV:15 Page 8 of 8